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AbstractD - -- -

We find that potential energy rather than wave height is a better ex-I A- vi2&'1I y-Gdes
perimental and analytic criterion for determining when wave breakingl " sqI/I , "
will occur. A simple two-dimensional, periodic algorithm is developedDist
and used to compare breaking onset criteria for energy input from (1)1 -A
converging sidewalls, (2) a submerged disturbance and (3) wave focusing.
Wave-breaking criteria (potential energy or the more classical peak-to- _ _

peak wave height) are a function of the rate of energy input. Large
plunging waves occur for large energy input rates with a smooth transi-
tion to smaller spilling waves for lesser energy input rates. The first two
kinds of energy input show similar trends in the limit as the energy input
rate becomes small. The third case, wave focusing, is the subject of an an QLA."

JhS PLCT Lt
ongoing investigation. The effects of wave modulation and reflection are
also discussed.

1 Introduction

The overall morphology of the surface hydrodynamics of ship wakes is strongly

affected by breaking waves, especially at the bow and in the near wake. There are

essentially two types of breaking waves-plunging breakers (with a large degree of

overturning) and spilling breakers (with white water only near the crest). Plunging

breakers are an important factor in the overturning of ships in rough seas, and they

often form continuously at the bow, producing bubbles and foam that strongly

affect the signature of a ship wake. Spilling breakers are more common in the

open ocean (due to wind) and in breaking wave experiments; they also occur in

the near-ship Kelvin wave pattern.

A recent discussion of ship wake hydrodynamics and the related remote sensing

issues is given by Griffin et al. (1989) and extensive summaries of breaking waves

are available (Cokelet, 1978; Kjeldsen and Myrhaug, 1978; Griffin, 1984). While
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the mechanisms for plunging and spilling breaking waves are often thought to be

quite different, we will show that their formation is similar with their qualitative

I features depending mainly on the energy input rate.

The fundamental experiments for determining two-dimensional wave-breaking

criteria (apart from that induced by wind-wave interaction) fall into three main

categories: (1) the focusing of essentially two-dimensional waves in the lateral di-

rection (Ramberg and Griffin, 1987; Van Dorn and Pazan, 1975); (2) the towing of

I a submerged object such as a hydrofoil (Duncan, 1981, 1983); and (3) the focusing

of variable length waves from a modulated wavemaker or wave source (Dommer-

muth et al., 1988; Duncan et al., 1987). These experimental studies propose a

wave-breaking criterion based on the peak-to-peak (crest-to-trough) wave heights.

However, the validity of this standard criterion has been questioned (Melville

I and Rapp, 1988), in part because peak-to-peak wave heights vary significantly

I during breaking and often decrease just before breaking. Any criterion will be

complicated since wave breaking is not amenable to analysis, and experimentally

or computationally determined criteria will be a function of many parameters.

Extensive discussions of breaking criteria based on wave height are given in Ochi

and Tsai (1983) and Huang et al. (1986). Breaking criteria based upon crest

acceleration are discussed by Srokosz (1986) and Longuet-Higgins (1985). An ex-

perimental determination of the onset of breaking is also difficult without detailed

I velocity measurements at the crest (Melville and Rapp, 1988; Van Dorn and Pazan,

1975), which are usually not available and are difficult to obtain.

Computational studies of breaking waves usually apply a point pressure distur-
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bance (Longuet-Higgins and Cokelet, 1976) or obtain breaking conditions simply

from having energetic initial conditions (Vinje and Brevig, 1981). While many new

I algorithms have been developed for breaking waves, no study has systematically

examined the parameters that cause wave breaking. For example, wave breaking

caused by a modulated wavemaker has been verified by computations (Dommer-

muth, et al., 1988), but these were so expensive that only one experimental event

was verified. In addition, previous computations tend to show plunging waves

instead of the more commonly observed spilling breakers.

In this study, we computationally examine the steepening and breaking of deep

water waves generated by the experimental methods cited above. We consider only

spatially periodic computations, so an ad hoc energy input term is deduced for

the convergent wave channel. Although the periodic boundary conditions preclude

studying the wavemaker problem, we briefly examine the effect of wave modulation

by examining a larger computational region (more than one primary wavelength)

as in Dold and Peregrine (1986). The effect of reflection from a beach can be

considered by putting a small standing wave component in the initial conditions.

Finally, to compare to the second type of experiment we use an array of submerged

disturbances (dipoles in this case) to preserve spatial periodicity.

There are difficulties in interpreting the differences caused by the computational

spatial periodicity as compared to temporal periodicity (for the unmodulated wave-

maker) of the experiments. This also affects comparisons of temporal vs. spatial

growth when ,ve model a convergent channel. Also, experiments continue after

breaking occurs, while the time-marching computations must stop at the first oc-
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currence of breaking unless an ad hoc condition is used to model the turbulence

and air entrainment. There is evidence that accurate spectral computations break

I down sooner (Huh and Schultz, 1989), indicating the possible formation of a sin-

gularity and the failure of potential theory before the wave crest approaches the

forward face.

In this report, experimental data for the wave height only are analyzed since

these are the traditional measurements and are easily obtained compared to veloc-

I ity measurements. This data is used to show that the potential energy reduces the

experimental scatter in breaking criteria and to show it acts as a better predictor

(rather than just indicator) of breaking.

In section 2, we pose the problem for periodic waves, including the modelling of

the growth in energy and the effect of submerged disturbances. Section 3 contains

a summary of earlier computational progress followed by a formulation of the two

computational techniques used in this study. Section 4 presents numerical results,

including comparisons to related computational schemes and the development of

I breaking criteria as a function of the energy input rate. The computations are

compared to previous experiments in section 5. Measurements of momentum and

energy losses after breaking are presented in section 6, and section 7 summarizes

the findings.

I
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* 2 Problem Formulation

The problem domain is shown in Fig. 1. The scales are chosen to make gravity and

the primary wavenumber unity. The phase speed and angular velocity of a linear

wave will then be unity as well. The initial boundary value problem solution is

described by a complex potential w( ) = 4' + iob, where 4' is the velocity potential,

I is the stream function and = z + iy represents the two spatial coordinates.

At every time step, the unknown boundary values of the velocity potential (half of

the values are known from the boundary conditions) are solved using the Cauchy

I integral theorem:
w(e) dC = iaw(k) ,(1)

where a is 0 or 2-r if the location of the kernel singularity, Ck, is outside or inside

I the boundary, respectively. If the kernel singularity is on the boundary (Ck E o),

a is equal to the included angle, and the integral is treated as principal-valued.

The kinematic and dynamic boundary conditions of a free surface for an inviscid

* flow are given as
D dw*(2

a n d 

t =(

DO' 1 dW, 2

I - - y + 21 - p. (3)

Here, p is a prescribed pressure (normally 0, as in this study, unless surface tension

or wind effects are included), D/Dt is a material derivative, and * denotes the

complex conjugate. The kinematic condition requires that material particles on

the free surface stay on the free surface, and the dynamic boundary condition
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requires that the pressure remains constant at the free surface in the absence of

surface tension.

I We complete the problem by applying a periodic boundary condition in the

horizontal direction, w(C) = w(C + 21), the deep water condition requiring w --* 0

as y --, -oo, and initial conditions. These initial conditions on the free surface

can be homogene- as if the waves are forced by submerged dipoles. For purposes of

illustration and comparison, we generally use the same initial conditions as McIver

I and Peregrine (1981):

3 T?=asinx and q-=acosx. (4)

These initial conditions satisfy linear theory as the wave amplitude a approaches

I 0. We apply increasing values of a until the wave breaks. We also apply more com-

plicated initial conditions to examine wave modulation and the effect of applying

initial conditions computed from steadily progressing waveforms using the method

of Schwartz and Vanden-Broeck (1979).

2.1 Modelling the convergent wave channel

I The convergent channel is inherently a three-dimensional problem. If the conver-

gence is small in z, the spanwise direction out of the plane of Fig. 1, a multiple-

scales approach will lead to the three-dimensional effect being delayed to a Pois-

son equation at higher order, with the lowest-order solution being that of a non-

convergent wave channel. The sidewall boundary condition simply becomes 0, =

I c, where c is the slope of the converging walls and the subscripts z and z rep-

I
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resent partial differentiation. This method of analysis precludes the possibility of

modelling the flow as spatially periodic and hence makes the problem intractable

I using periodic algorithms.

If instead we model the channel as one with straight walls converging in time,

we can continue to model the problem as spatially periodic. We assume that the

convergent channel sidewall boundary conditions can be approximated by

C. = =lCC at z = z., = z , (5)

where z0 is the scaled width of the channel at the wavemaker and c, is the av-

erage group velocity of the fundamental wave. These conditions lead to a two-

dimensional Poisson equation with a small right-hand side:

+ (6)

This assumption is not satisfactory because it requires significant flow at infinite

depths and consequently the Poisson equation cannot be made into the easily

computed Laplace equation.

Instead of using the multiple-scales approach or allowing the sidewalls to con-

verge in time, we simply add a term in the Bernoulli equation that causes the

energy to increase exponentially in time so that (3) becomes

DO I1 IdW_ 12 +Dt 2 - C to--. (7)

This is similar (but with the opposite sign) to the dissipative effect used by Lamb to

develop the radiation condition. Starting with a wave of small amplitude, this term

eventually causes the wave to break, much like the convergent channel. While this
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causes exponential temporal growth in the computations, the experimental energy

per unit width, E, grows in space. The corresponding temporal growth parameter

I can be approximately related through the group velocity and conservation of energy

II by
1 dE 1 dzw 1 dz, cc8"-Ed = - j = - .-jco= . (8)

zT dt zw dC z,

I The dimensionless values (c = 1/16) for the experiments considered here corre-

spond to

7 I K , (9)

I where the dimensional constant K is .008m/s 2, and W and T are the dimensional

values of the local channel width and wavemaker period, respectively. This keeps

the growth parameter below 0.05 in the region of breaking.

I
2.2 Modelling periodic submerged disturbances

We wish to show how submerged disturbances can force wave breaking because this

I case is far easier to compute accurately than surface-piercing bodies. To keep the

periodic boundary cond*Iion requires that the disturbances be periodic. Rather

than modelling a complex two-dimensional shape such as a hydrofoil, we use a

periodic array of moving dipoles:

Wdp = ad, cot[I(t - )] , (10)

where adp and dp are the strength and location of the dipole, respectively. The

dipole depth, ddp, and velocity, Vdp, are prescribed such that Cdp = (Vdpt, -ddp). As

I
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long as the strength of the dipole is not too large and the depth is not too small,

the dipole can closely represent a cylinder of radius rdp if adp = vdprdp/2.

I Since the dipole represents a simple pole in the complex potential plane, the

only alteration required is to subtract out the singular part and solve only for the

remaining regular term from the integral equation (1).

I
3 Computations of Steep and Breaking Waves

3.1 Recent computational advances

I Although formal analytical techniques have been developed for small-amplitude

gravity waves, unsteady and steep waves must be solved numerically. The most

efficient of these algorithms are based on boundary integral techniques. Even then,

the algorithms can be rather time consuming. Hence, no thorough and complete

parametric study has been performed on gravity waves. Even more important, to

reduce the computational effort, the problem domain is kept as small as possible

by applying periodic boundary conditions. Recently, computations with many

fundamental wavelengths inside the periodic domain have been applied by Dold

I and Peregrine (1986), and the nonperiodic fully nonlinear wavemaker problem has

been computed by Dommermuth et al. (1938). Casual observations of breaking

waves show that they are not spatially periodic. In this report, we only present

results for the periodic problem, although by using a large spatial period, the model

can represent results on an infinite domain.

I The boundary integral numerical schemes for irrotational flow problems can be

I
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broken into three general approaches based on Green's functions (Longuet-Higgins

and Cokelet, 1976; Vanden-Broeck, 1980), vortex dynamics (Baker, Meiron and

I Orszag, 1982), or the Cauchy integral theorem for complex potentials (Vinje anv

Brevig, 1981). To some extent, the three techniques give equivalent results (McIver

and Peregrine, 1981). Recent work (Dold and Peregrine, 1984) has shown that ai-

gorithms based on the Cauchy Integral theorem can be up to 50 times faster than

Green's function algorithms and 10 times faster than those using vortex meth-

ods. Lin et al. (1984) use the Cauchy formulation when solving two-dimensional

problems and revert to the Green's function algorithm for axisymmetric problems.

Apparently, the efficiency of the complex algebra is significant and normal deriva-

I tives of the Green's function need not be found.

Here we report on two algorithms based on the Cauchy integral theorem. The

first is an improvement of a piecewise-linear algorithm of Vinje and Brevig (1981)

as described in Schultz and Hong (1989). The second is a spectral technique similar

to that proposed by Roberts (1983) and described in Huh and Schultz (1989). We

I describe both methods because the first method, although less accurate and more

computationally intensive, is also more robust. Comparisons will be presented.

In both methods, the physical domain is mapped to an approximate unit circle

using the confornal transformation:

C = eiz (11)

(see Fig. 1). This eliminates the periodic boundary conditions and sharp compu-

I tational corners used by Vinje and Brevig (1981). All derivatives are taken in the

conformed -pace-the piecewise-linear method uses three-point central differences

11I
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while the spectral method takes derivatives in the spectral space of the conformed

representation. An alternate method (not used here) does not use conformal map-

ping but replaces the infinitely periodic integrand with a summation over a finite

domain to form a cotangent kernel, as in Baker et al. (1982).

The algebraic system that results from discretizing the integral equation is it-

eratively solved for both methods using a generalized minimum residual method

(GMRES) based on the work of Saad and Schultz (1986). This variation of the

conjugate gradient method for nonsymmetric matrices works very wel on the diag-

onally dominant matrices of either method-especially the matrices from the spec-

tral algorithm. The time marching is also similar in both algorithms. Fourth-order

Runge-Kutta-Gill and Hamming predictor-corrector methods with an automatic

adjustment of step size were both used, with the predictor-corrector method show-

ing the greater computational efficiency, especially for the higher-accuracy com-

putations. Filtering of the spectral computations is probably necessary to allow

them to proceed closer to breaking, although none was performed here. Filtering

is discussed in Huh and Schultz (1989).

3.2 Piecewise-linear computational technique

U We take Ck in (1) to approach the boundary from the outside of the domain so that

a is zero, although there are computational reasons for placing Ck slightly away

from the contour in some cases (Schultz and Hong, 1989). The algebraic system

I is formed by discretization of (1), as explained in Vinje and Brevig (1981), and by

letting the kernel singularity approach each of the N nodal points, i.e., Ck --+ k. A

12I
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special limiting process is needed to evaluate the integration near Ck. The system

of linear algebraic equations when w is discretized as a piecewise-linear function

I between the N boundary nodes is as follows:

N
EIwirik = 0 for k 1,...,N (12)
3=l

where

rik = - Ck ln(j+1- Ck) 4 - -- k In( -k ) for jk, (13)
-j -j-- 1 -4k

r., = In( (14)

I Eq. (13) is evaluated using l'Hopital's rule when j = k + 1 or k - 1. Moving

the known boundary conditions to the right-hand side gives a complex algebraic

system for unknown Oi on the free surface.

When the complex potential is known along the domain boundary, the solution

can be stepped forward in time using the Bernoulli equation and the kinematic

I boundary conditions. We solve this problem in a similar way to Vinje and Brevig

with (1981)the following changes:

1) Rather than using the real or imaginary parts of the discretized Cauchy inte-

gral theorem (depending on whether the real or imaginary part of w is known), we

use both to give 2N real equations and N real unknowns. Numerical experiments

for known test cases (Schultz and Hong, 1989) show that the least-squares solution

is better for nearly circular contours, especially when the node placement is irreg-

ular (as will be the case after nodes are convected on the free surface); however,

I both results are second-order convergent. The solution time for a direct method of

inverting the overdetermined system would be twice that of the determined system

13I



but our experience with iterative conjugate gradient solvers indicates an increase

in computational costs of only 10 percent.

2) We use a conformal map to eliminate the bottom and periodic boundary

conditions.

3) We use a central difference form for dw/d4 (or dw/dC), while Vinje and Bre-

vig use a truncated analytic form. Since the solution is piecewise-linear rather

than analytic, we have found that some numerical instabilities can develop using

the truncated analytic form. One can easily find examples where the derivative

dw/df at a corner of the contour computed using the analytic form lies outside

the range computed by the forward and backward derivatives. This violates the

spirit of using piecewise-linear functions and can lead to numerical instabilities,

although the truncated analytic form works better when the contour is smooth.

3.3 Spectral computational technique

Roberts (1983) used a desingularized kernel in his vortex formulation. Generally, it

is difficult to find a suitable desingularized form of a kernel in an integral equation,

but in the complex formulation it is relatively simple. The Cauchy integral equation

(3) can easily be rewritten as

)f -(s)-w(Ck)ds = 0, (15)

where the principal value integral can be replaced by the closed contour integral

since the integrand is no longer singular. When f approaches Ck, the integrand

approaches dw/ds at the kth node point. Therefore, this kernel does not show the

14
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singular behavior as f approaches Ct. The integral equation (1) is converted to the

following sets of equations for k = 1 ... N:

* N

EIjk = 0 for k =,...,N, (16)
j=1

where N is the number of nodes, and Ijk is represented by

-i -k( )jif 36kIjk = f ifG (17)

{ (d)k ifj=k.

The algebraic system (7) effectively becomes a differential system because IjA, in-

cludes the derivative of w. To evaluate these derivatives spectrally, we use a car-

dinal function representation of w (Boyd, 1989):

N

WOO) = EC(S)W1 , (18)

I where 1 7

Cj  sin r(s - sj) cot j(s - sj), (19)

and the derivative of Cj is

dC { *(-1)' +' cot ( - if i 3 (20)

0 if/ j.

Then, (7) becomes

I N
Ljrjkwj = 0 fork=1,...,N, (21)I 3--1

where the influence coefficients rik are now
.--=-- - - "" ) ifj~k

rk= do do L i () (22)

E-]i=l.i#k,-(d) ifj k

15
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Unlike the method of Baker et al. (1982) which evaluates the integrand at every

other point, the desingularized kernel is evaluated at every nodal point; hence, the

I matrix is full.

I
4 Typical Computational Results

4.1 Convergence and stability

I The convergence of the spectral method is compared to the piecewise-linear method

in Huh and Schultz (1989) for steady test problems. Here, we briefly extend this

comparison to time-marching by examining a gravity-wave problem with the initial

conditions given by (4) and a = 0.2. Fig. 2 compares errors using N = 16 for the

conservation of energy-the conservation of mass results are very similar. The

I conservation of energy is determined by (E(t) - E(O))/E(O), where E is given by

l = f 2dz+ lJ4OdO. (23)

Not only are the results for the spectral computations much more accurate, but

they are less computationally intensive. All these computations for a = 0.2 can

be computed indefinitely without further loss in accuracy (as tested to t = 200).

The low resolution time computations were made with Et = = 10 - 4 (error

criteria for the time-marching and iterative algebraic solver, respectively), the high

resolution computations with et = e, = 10- 10. Further refining the time-marching

parameters for either method does not improve the computational error. For this

I initial condition, the spectral computations can give essentially double precision

(16 digit) machine accuracy when N = 32 and et = e = 103.

16I



4.2 Steadily progressing wave

We first show that under special circumstances waves of large amplitude do not

break. Specifically, we examine gravity waves of permanent form and suppress the

Benjamin-Feir instability by applying periodic boundary conditions that do not

allow subharmonic disturbances (Longuet-Higgins, 1978). The initial conditions for

a steadily progressing wave can be computed from a series expansion as performed

by Stokes (1880) and extended using computer algebra by Schwartz (1974). Rather

than use series acceleration techniques, we compute the initial conditions for our

time-marching code from the iterative method of Schwartz and Vanden-Broeck

(1979). We set their surface tension parameter to zero and modify their mapping

U slightly to desingularize the mapping at very high amplitudes.

Because obtaining accurate initial conditions is the "weak link" in these compu-

tations, we compute twice as many points as we use in the time-marching algorithm

and discard every other value. To obtain an accurate Jacobian matrix for proper

convergence, these computations must be performed in double precision (16 digits).

Surprisingly, unless the amplitude is very near the limiting Stokes wave height that

forms the 1200 crest, single precision is sufficient for the time-marching program.

Figs. 3a-b show eight wave height profiles spaced At = 0.5 apart for the ampli-

tude parameter (Vimo.-i7in)/ 2 7r = 0.1 and 0.115, respectively. The time-marching

computations were performed using N = 64. The spectral algorithm was used in

Fig. 3a, while the more robust piecewise-linear code was required for Fig. 3b since

the amplitude is near the Stokes limit of (q... - qi)/27r k 0.14. The computed

phase velocities (which are approximately 10.3 and 14.0 percent higher than linear

17
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waves for the cases in Figs. 3a and 3b, respectively), as determined by marching for

long time, are accurate to within .005 percent. The RMS variation in the trough to

I crest wave height is 8x10- for Fig. 3a and 3x10-4 for Fig. 3b. The overdetermined

system in this case is twice as accurate as the strong system and only requires 20

percent more CPU time. The spectral computation was again the most accurate,

conserving energy and mass to within one part in 109 (compared to one part in

10' for the equivalent piecewise-linear computations and one part in 103 for the

I higher wave of Fig. 3b). The potential energy was constant to seven significant

digits (PE = 0.1440120, KE = 0.15158) for Fig. 3a and three significant digits for

Fig. 3b (PE = 0.1815, KE = 0.19435).

These waves are not found experimentally, because even if they could be formed,

they are subject to a Benjamin-Feir instability (which we suppress with our peri-

odic boundary conditions).

I
4.3 Simple harmonic linear wave initial conditions

Fig. 4 shows typical results of free surface profiles for dimensionless times 0.1 apart

for two different initial amplitudes. The first family of curves for a = 0.3 (4) results

in a "spilling" breaker. When more energetic initial conditions are used, as in

Fig. 4b (a = 0.544), the wave becomes a "plunging" breaker. The algorithm breaks

* down at the last time step shown because of insufficient spatial and/or temporal

resolution. This breakdown exhibits itself as a failure of the iterative solution of

I the algebraic system to converge. The wave profiles change from solid to dashed

lines when the spectral solution no longer converges. Until this time, the spectral

18I



(solid line) and piecewise-linear (dashed line) computations are nearly identical

although the spectral result is far more accurate. (Slight differences in the profile

I are shown for the last plotted spectral computation.) This is an indication that the

spectral computations are not as robust as the piecewise-linear computations. Our

experiences have shown, however, that more precise piecewise-linear computations

(by increasing the number of nodes or decreasing the time step) break down sooner.

The opposite is true for the spectral computations. We are continuing to study this

I in an attempt to see if singularities develop in the inviscid model before "breaking"

occurs, as in the study of singularity formation in vortex sheets (Krasny, 1986).

We have run numerical simulations for many values of a to determine the initial

conditions (4) that cause breaking or spilling. We find that for a > 0.28 waves will

spill and for a < 0.27 waves will progress indefinitely. Typical computations use

N = 60 or 80 and At = 0.1 or 0.05. These results are somewhat sensitive to the

initial conditions in that an initial condition using a three-term Stokes profile,

q = a sin z + 0.5a 2 sin 2z + 0.375a 3 sin 3z, (24)

does not apply as large a perturbation to the steady form and, hence, the breaking

is suppressed to slightly higher amplitudes. This can be seen by examining the

limiting case of an "exact" waveform in Fig. 3b, where a y,a - yI.m, = .722 is

maintained without breaking. However, a very small subharmonic disturbance

would cause these high waves to break.

Since the total energy is constant throughout an entire numerical simulation as

well as a (presumably inviscid) experiment, it would appear to be an ideal criterion

to determine breaking. Unfortunately, without a very carefully calibrated and
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instrumented wavemaker or the ability to measure the velocity everywhere in the

flow field, the total energy cannot be measured. Instead, a measured steepness

I criterion (q. - i7m)/wavelength is usually used. We see from Fig. 5a that

this criterion varies widely in time for the two cases with initial conditions (4)

of a = 0.27 and 0.28. The peak-to-peak height for the nonbreaking (nonspilling)

wave goes higher than the value at a previous time for a wave that breaks. Since

(especially the piecewise-linear) computations waves show the wave breaking at

I less than the maximum peak-to-peak height, the height for a nonbreaking wave

could exceed that of a wave that is breaking. There is experimental evidence for

this as well (Melville and Rapp, 1988).

However, the potential energy, although not constant in time, is much less vari-

able and can easily be determined from wave probe data. Fig. 5b demonstrates

that the computed potential energy for these same two initial conditions are dis-

tinct, indicating that potential energy is a better criterion in determining whether

a traveling wave will break. These computations show that breaking does not occur

I at the peak of the potential energy. This could be anticipated since the increased

fluid velocities near the crest would increase the kinetic energy at the expense of

the potential energy.

It should be noted that the maximum and minimum wave heights are deter-

mined at the same instant of time at two different locations for the numerical

I results of Fig. 5a, while experimental measurements (with one wave probe) are

usually measured at one location at two different times.

Figs. 5a and 5b also compare spectral and piecewise-linear computations. The

I
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piecewise-linear computations proceed further before breaking down, but as these

computations are refined, they approach the spectral computations and do not

I proceed as far.

I
4.4 Convergent wave channel

1 The growth rate, -y, of equation (7) will cause a wave of any nonzero initial ampli-

tude to break eventually. When the growth rate is large, the wave quickly plunges

(Fig. 6a); when it is smaller, after a longer time the wave spills like those seen

I experimentally (Fig. 6b). The time required for the wave to break, of course, also

depends on the initial conditions.

Fig. 7 shows the temporal development of y1, - ymin, the potential energy,

3 and the total energy for a growth parameter 7 = 0.2 and two different initial

conditions, a = 0.1 and a = 0.2. The average growth in the total energy for

I all cases is exponential at the rate expected, but with small oscillations. These

oscillations are not computational errors, but artifacts of the growth model. The

potential energy (and hence the kinetic energy) also grow exponentially but with

larger oscillations. The lines cease at the point where the computation fails, which

for these cases result in wave profiles that appear to be spilling breakers. All

computations are spectral except for the dotted line, which shows small deviations

of the peak-to-peak measurement near breaking for a = 0.2 when the piecewise-

linear algorithm is used. In contrast to the no-growth breaking (Figs. 5a and b),

I these numerical simulations show breaking at or near the maximum values of the

peak-to-peak or potential energy measures. The wave grows to a higher value
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(by either measure) before breaking when the initial amplitude is smaller. This

appears to be caused by the ability of the smaller wave to evolve in time with a

I wave profile that is more similar to a nonlinear steadily progressive wave.

Breaking wave criteria for waves with varying growth rates can be obtained from

Fig. 8. This shows that the breaking criteria (by either peak-to-peak or potential

energy measures) increase with the energy input rate, except for a "resonance"

phenomena around -y = 0.1, which appears to be an artifact of the periodic con-

I straints. The data also show dependence on the initial conditions-smaller initial

amplitudes adjust to the growth "better" and, hence, break at higher amplitudes.

The dependence of the breaking height has been correlated with growth rate by

Van Dor and Pazan (1975), who have also conducted experiments in a convergent

channel. They obtain somewhat higher values of breaking wave height than those

I of Ramberg and Griffin (1987), which is consistent with the higher convergence

rate of their channel, f = 1/10.

I 4.5 Modelling periodic submerged disturbances

Duncan (1981, 1983) towed hydrofoils to create breaking waves. There are two

reasons for using hydrofoils: the first is to avoid separation (which we does not

I concern our potential flow model), and the second is to apply (negative) values of

lift. We could model lift by adding a periodic vortex array to the periodic dipole

array, but we choose not to include this effect here. Rather, we "tow" simple

dipoles at different speeds and depths and determine the strength of the dipole

(the approximate radius of the cylinder) that causes breaking.
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We tow the dipole at constant speed starting from rest with homogeneous initial

conditions. To avoid an impulse at t = 0, which would cause high-frequency waves,

I we increase the dipole strength exponentially with a time constant of unity, i.e,

1
ad, = ivd,[r-d,(1. - et)]2. (25)

From steady linear theory, the number of waves that should appear in a compu-

tational period is equal to 1/v2, (for our scaling). We have chosen vd, values of 1,

0.707, and 0.5 to represent 1, 2, and 4 wave computations.

Figs. 9a-c show a typical computation for a dipole starting at the origin with

I a speed equal to 0.5 and unit depth; the strength atp represents a cylinder of

approximately circular cross section with a radius = 0.39 (a larger radius would

cause wave breaking). Fig. 9a shows the development of the free surface beginning

3 at rest; initially, a single peak occurs slightly ahead of the dipole. A local maximum

in wave height is achieved around t = 6, and then the wave puts energy back into

I the dipole. Fig. 9b shows computations at a later time with a transition between

3 three local maxima and four maxima (four is predicted by linear, steady theory).

This transition between the number of peaks is partly responsible for the "beating"

rhythm, as seen in the wave diagnostics in Fig. 9c.

Table I shows the maximum value of adp before breaking occurs (up to t = 200)

I for three combinations of dipole depth and speed as computed by the piecewise-

linear algorithm. Often, however, the wave breaks at a lower height as in the

constant energy computations in Fig. 5b. The maximum ad, values for the spectral

algorithm are somewhat lower, although the wave breaks at approximately the

same height. The difference between the algorithms are greater for the dipole case
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I because the computation is more sensitive to the numerical parameters. The time

step had to be significantly smaller in the computations with dipole disturbances

although a spatial resolution of N = 64 still seemed sufficient.

The potential and total energy are computed as before. While the potential

energy representation is the same in this case, the kinetic energy should exclude

the kinetic energy inside the cylinder formed by the dipole. This could be computed

by integrating f Odok in the clockwise direction about the exact cylinder surface.

I Then conservation of energy could be obtained by knowing the work done by the

dipole using Lagally's theorem. This was not attempted here; instead, we compute

the "total" energy from the free surface contour only. Mass is still conserved to a

high degree (the mean height is 10- 4 to 10- 10 of *he RMS wave height).

I Table I. Wave Breaking Caused by a Periodic Dipole Array

_depth speed 1 .707 .5

.5 max adp .14 .09 .10
7Ymax - Yinii .86 .35 .21
Total Energy .43 .08 .02

Potential Energy .21 .035 .009

I Beat Period 125 130 oo
1 max adp .19 .14 .41

ymax - ,Y/m .86 .35 .2
Total Energy .43 .07 .013

Potential Energy .21 .03 .008
Beat Period 130 160 12

2 max adp .309 .33 .97
Ymax - Ymi .8 .35 .21

Total Energy .41 .04 .03
Potential Energy .20 .022 .015

Beat Period 123 200 10

I
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Figs. 10a-b show breaking waves for two different dipole depths. The deeper dipoles

tend to produce only one primary peak at vdp = 0.5, while shallow dipoles give

I four a.s predicted from linear theory. Surprisingly, the peak-to-peak breaking wave

heights are about the same, independent of the size of the other nonbreaking peaks.

4.6 Wave modulation and reflection

Experimental waves break at significantly less than the predicted Stokes limiting

value, and even less than that predicted here, because of three-dimensional effects,

I viscous effects, wave reflections from beaches, and the Benjamin-Feir instability.

We can test the last effect by taking a larger periodic domain and applying a sub-

harmonic disturbance-a modulated initial condition. Dold and Peregrine (1986)

3 computed recurrence caused by modulation, but did not examine breaking waves.

Fig. 11 shows a breaking wave that has a 10 percent modulation of the primary

I wave for a wavelength twice that of the primary wave. This is the easiest long

wave disturbance to model using a periodic algorithm and is the wavenumber that

Longuet-Higgins (1978) considers to be most unstable. Specifically, the boundary

conditions we apply are those of (4) except that a is a "slowly" varying function

of x. For Fig. 11, a = a'(1 + 6 cos2x), where a' = .23 and 6 = .10. F.oi this sim-

I pie example, we see that a 10 percent modulation of the initial conditions causes

3 an approximately 20 percent reduction in the initial aize of a wave that breaks

(a = .28 is reduced to .23).

We also expect that reflection from the beach could cause smaller amplitude

2
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waves to break. These reflections are modeled by

Yj=a (sinx-pcosz) and O=a (1+p)cosz, (26)

where p is the reflection coefficient. Fig. 12 shows that, contrary to the the effect

of modulation, a 10 percent reflection coefficient modifies the initial conditions for

breaking by approximately 5 percent (a = .28 is reduced to .265). The plots of

Ymax-ym n and potential energy are qualitatively similar to those of Figs. 5a and 5b.i
5 Convergent Channel Experiments Compared to Com-

putations

The Naval Research Laboratory (NRL) experiments discussed in this section were

conducted in a channel 30m long and 1.3m wide at the wavemaker with about

1.0m mean water depth. The test procedures and the set-up of the experiments

are described by Ramberg et al. (1985) and Ramberg and Griffin (1987). The

channel was fitted with a convergent section with a rate of 1:16. This generated

steep and breaking waves under reasonably well-controlled conditions. Previous

breaking wave experiments in a wave channel with a convergent section had been

conducted and reported by Van Dorn and Pazan (1975).

Wave heights were measured with capacitance wave probes. The length-scale

for the experiments was g(T/27r)2 , such that the nondimensional spatial period of

a linear wave was 27r, in accordance with the periodic computations.

I The location of wave breaking was established visually during the experiments

as the position along the convergent channel where the sharp wave crests were
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first perceived to be "tripping" into a spilling or plunging mode (where we first

observed an increase in the crest fluid velocity over that of the traveling waveform.

I These locations were recorded and later compared to the positions where the mea-

sured variation of the average wave height H exhibited a transition from growth

to attenuation along the channel. In all of the cases compared, there was good

agreement between the two estimated locations. Typical examples of spilling and

plunging breakers are given in the photographs in Ramberg and Griffin (1987).

ITwo hundred equally spaced temporal measurements of wave height were taken

over eight wavemaker periods with two probes placed 3.Om apart. These measure-

ments were repeated sequentially over twenty-four spatial locations.

It is often difficult to determine the breaking location, especially when breaking

is intermittent. Fig. 13 shows how the spectra at the break point can help deter-

mine occurrences of wave breaking. The nonbreaking wave has one prominent peak

at k = 8 since data were taken for eight cycles of the wavemaker at each location.

When breaking occurs, the higher harmonics are much more pronounced. Also,

I the wave numbers below k = 8 are larger-indicating greater wave modulation

during breaking in these examples.

At each location, for each wavemaker period, a maximum and a minimum height

were determined using quadratic interpolation. The mean and standard deviation

of the nondimensional peak-to-peak height, H, was determined for the eight cycles

I at each location. The potential energy (or RMS wave height) of the experimental

waves was computed by integrating the square of the height using Simpson's rule for

six to eight full wave periods, as determined by consecutive crossings of the average

2
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datum height level. After computing the mean potential energy, the standard

deviation of potential energy between full wave periods was computed. The average

I RMS value for all data (breaking and nonbreaking) is shown in Fig. 14 as a function

of the nondimensional growth rate. The growth rate was determined from (9) even

though some data was taken just into the nonconvergent portion of the channel as

described by Ramberg, et al. (1985). Those waves determined to be at the point

of incipient breaking are marked with closed symbols. The general trend of higher

I waves for higher growth rates is an indication of the growth of the waves down the

channel as the width decreases.

Schultz et al. (1986) and Ramberg and Griffin (1987) found that the dimensional

peak-to-peak measurement for breaking waves was equal to 0.021 gT 2 , correspond-

ing to H = .83 in the present scaling as noted in Fig. 15a. This figure shows that

I H increases with the growth parameter f, as predicted in Fig. 7. These predictions

are higher than the experimental data-presumably due to three-dimensional, vis-

cous, and wave reflection and wave modulation effects in the experiments. The

least-squares linear fit of the breaking data in Fig. 15a is given by

H = 0.57 + 7.6-f. (27)

The standard deviation about this curve is ±10 percent compared to ±17 percent

for the entire data breaking data of Fig. 15a. The corresponding RMS height

(proportional to the square root of potential energy) is shown for breaking waves

in Fig. 15b. A least-squares straight line fit for this data has the form

RMS = 0.22 + 1.3-f, (28)
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with a deviation of ±7 percent, significantly better than the variation for H. Also,

potential energy (or RMS) reduces scatter in the standard deviation of the mea-

I surement at one location. At each breaking event location, standard deviations of

H and the RMS wave height for the six to eight cycles are calculated. The mean

of these standard deviations is 3.2 percent for H = y... - y,.im and 2.7 percent

for the RMS height. The computations (e.g., Figs. 5b, 9c, 12) also show that

potential energy (or equivalently RMS wave height) is "better behaved" than the

I peak-to-peak values.

I Some comvarisons of the experimental wave breaking location showed good

agreement (within 30 percent) of the computed time of breaking multiplied by the

group velocity, when a was chosen from linear steady wavemaker theory.

I
6 Momentum and Energy Considerations After BreakingI
A wide range of wave heights at the onset of breaking is shown in Ramberg and

3 Griffin (1987) for a number of recent investigations corresponding to deep water

waves. The data from all of the experiments employ a crest-to-preceding-trough

value for H. The wave heights measured by Ochi and Tsai (1983) for the breaking

of steep nonlinear waves in a uniform channel cover the range of gT 2 = 200 to 800

cm, while the wave heights measured in the NRL experiments cover the range of

I gT 2 = 550 to 1100 cm. The wave heights measured by Duncan (1983) are in the

range of gT 2 = 100 to 400 cm and those measured by Bonmarin and Ramamon-

jiarisoa (1985) are in the range of gT 2 = 350 to 650 cm. The latter experiments

I
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were conducted to measure the breaking of waves in a uniform channel, while in the

experiments of Duncan the breaking waves were generated by towing a hydrofoil

I through still water at various submergence depths. Above a critical submergence

depth of the hydrofoil, wave breaking occurred spontaneously (Duncan, 1983).

It is also possible to compare the results of Ramberg and Griffin (1987) with

the measurements of momentum flux losses by Melville and Rapp (1985). The

latter reported measurements of wave breaking in packets of waves generated in

I a uniform channel by the superposition of Fourier components over a small band

centered on the frequency f,. The integrated wave amplitude a2 was assumed by

Melville and Rapp to be a measure of the momentum flux, AS, due to breaking

and was determined locally by taking the difference between the incipient breaking

condition and conditions farther downstream (normalized by the upstream refer-

ence value S.). The rate of momentum flux loss R' can be expressed as (Melville

and Rapp, 1985) A S/S.
b Ak 0(x - xb)' (29)

where k. = wo/g for deep water waves, when w. is the angular frequency. A

comparison between the experiments of Ramberg and Griffin and those of Melville

and Rapp (1985) can be made directly from the results in Table II. Only the initial

rates of energy loss are compared here because during the convergent channel

experiments the energy and momentum losses rarely reached an asymptotic value,

i.e., the waves continued to break throughout the measurement interval. It should

be noted that the rate of momentum flux loss from the experiments of Ramberg

and Griffin is derived from estimates of potential energy based upon measured

I
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wave heights. However, there is only a difference of 2z between the loss rates of

potential energy and momentum flux.

The results of the two experiments are in agreement that the initial rates of

momentum flux loss due to plunging breakers are typically about twice those of

spilling breakers. Moreover, the results of Melville and Rapp also indicate that

the total losses for the two types of breakers differ by about the same factor. The

smaller momentum flux losses reported by Melville and Rapp are expected since

I their results are for the integral momentum flux of a group of waves. It is possible

to qualitatively reconcile the loss rates magnitudes given in Table II if about half

of the most energetic waves in each packet are actually breaking at any given time.

U Table II. Momentum Flux Losses in Wave Breaking

I
Breaker Type Wave Steepness ak Momentum Flux Loss, R'6

Spilling 0.30 +  0.31-0.38 ++  0.023 +  0.048 + +

Plunging 0.39 0.33-0.38 0.045 +  0.089 ++

I +Melville and Rapp (1985), ++Ramberg and Griffin (1987).

3 7 Concluding Remarks

I Computations indicate that the potential energy of surface gravity waves are a

I better criterion for the onset of breaking for steep nonlinear waves than the wave

height. The computed wave height or steepness appear to have more erratic varia-

tions in time than the potential energy. The potential energy also reduces the ap-

parent scatter observed in laboratory measurements of individual breaking events.
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3 There are three experimental indications that the square root of the potential

energy is better than the peak-to-peak (or steepness) criteria in predicting the

I onset of breaking events. These are (1) a better correlation to a least-squares fit

with z with only two-thirds of the scatter that the peak-to-peak correlation gives,

(2) a smaller percentage standard deviation around the mean value at an individual

location (breaking or nonbreaking), and (3) a smaller mean percentage variation

of individual breaking events from a breaking criteria.

IEither breaking criteria (peak-to-peak or potential energy) have been shown to

depend on the energy input rate, with the smallest values occurring when the en-

ergy input rate is small and spilling breakers are expected. This dependence further

explains the scatter of breaking criteria in the convergent channel experiments.

Continuing studies show that the peak-to-peak wave heights and potential en-

ergy that can be sustained without breaking are relatively independent of the

method of wave formation. We find that the computations tend to show a higher

breaking criteria than the experiments, although this difference can be lessened

I somewhat by modelling wave modulation and to a lesser degree, wave reflection.
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Figure Captions

1 Problem Domain
a. physical ( ) space
b. mapped (C) space

2 Comparison of errors for energy conservation (N = 32)
piecewise-linear (total cpu seconds = 186)
spectrcJ, high time resolution (total cpu seconds = 28)

- . . . - spectral, low time resolution (total cpu seconds = 100)

3 Steadily progressing wave profiles
a. Yimaz - Ymin = 0.1. (spectral)
b. yima - , mi, = 0.115. (piecewise-linear)

4 Free surface profiles (At = .1, N = 32)
a. spilling breaker (a = 0.3)
b. plunging breaker (a = 0.544)

5a Peak-to-peak wave heights for a = 0.27, 0.28
spectral N = 32, --- piecewise-linear N = 32, ....... N = 64

5b Potential energy for same two initial conditions
spectral N = 32, --- piecewise-linear N = 32, ....... N = 64

6a Wave profiles with rapid exponential growth
-f = .5, increment between plotted profiles At = 0.2
(except last increment At = 0.1)

6b Wave profiles with slow exponential growth
-f = .02, increment between plotted profiles At = 0.2

7 Evolution of wave diagnostics with growth parameter 't = 0.2
two initial wave heights, a = .1 , .2, spectral computations

Ymaz - Ymin
potential energy
total energy

............ piecewise-linear results for yr. - ymi,,

8 Breaking criteria for exponential growth conditions
o-a=.1 A -a= .2I/maz - lmin

potential energy
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9a Wave profiles caused by a moving dipole (initial development)
V 4P = .5, rap = .39, ddp = 1, 0 _ _> 10

9b Wave profiles caused by a moving dipole (intermediate development)
vdp = .5, rp = .39, dp = 1, 20 > t > 23

9c Wave diagnostic for profiles caused by a moving dipole
SImaz - Ymim
potential energy
total energy

............. corresponding curves for a breakirg wave rp = .42

I 10a Breaking profile for shallow dipole (vdp = .5, rdp = .11, ddp = .5)
10b Breaking profile for deep dipole (vdp = .5, rdp = .99, ddp = 2.0)

I 11 Breaking modulated periodic wave
initial modulation is 10 percent with wavelength twice that of the primary wave.
- -initial wave profile

profile at breaking, t =97.0, 97.2, 97.4, 97.6

12 Breaking wave with reflection
reflection coefficient is 10 percent with initial amplitude a = .265

Ymaz - Ymin

potential energy

13 Fourier coefficients for wave data (experiments from Ramberg et al., 1985)
- -breaking wave

nonbreaking wave

14 RMS wave height for all data (experiments from Ramberg et al., 1985)
(solid symbols denote incipient breaking waves)

15a Peak-to-peak height for breaking waves (experiments from Ramberg et al., 1985)
15b RMS height results for breaking waves (experiments from Ramberg et al., 1985)

I
I
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